You are here: irt.org | FOLDOC | Fermat prime

<*mathematics*> A prime number of the form 2^2^n + 1. Any
prime number of the form 2^n+1 must be a Fermat prime.
Fermat conjectured in a letter to someone or other that all
numbers 2^2^n+1 are prime, having noticed that this is true
for n=0,1,2,3,4.

Euler proved that 641 is a factor of 2^2^5+1. Of course nowadays we would just ask a computer, but at the time it was an impressive achievement (and his proof is very elegant).

No further Fermat primes are known; several have been factorised, and several more have been proved composite without finding explicit factorisations.

Gauss proved that a regular N-sided polygon can be constructed with ruler and compasses if and only if N is a power of 2 times a product of distinct Fermat primes.

(1995-04-10)

Nearby terms: fencepost error « fepped out « FEPROM « **Fermat prime** » Fermat's Last Post » Ferranti F100-L » ferrite core memory

FOLDOC, Topics, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, ?, ALL